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OPTIMAL ASSIGNMENTS IN AN ORDERED SET; AN APPLICATION 
OF MATROID THEORY 

by 

David Gale 

1. PREAMBLE 

The substance of this paper is an observation concerning a certain rather 

natural type of assignment problem which is described in the next section. After 

completing an earlier version of the exposition of this result, I was introduced 

by D. R. Fulkerson to the concept of matroid and realized that what I had 

observed was a rather obvious property of these objects, so that for those 

familiar with the matroid literature my theorem could be proved in a few lines. 

On the other hand, since the result itself may be of interest to people who 

have not been initiated into matroid lore I decided to prepare the present 

revised version which may also serve as an introduction to matroids by means 

of this particular application. 

2. THE ASSIGNMENT PROBLEM 

A certain set of jobs has been arranged in order of importance by some 

priority system and it is desired to fill the jobs from a pool of workers where 

each worker is qualified for some subset of the jobs.  In general, it will not 

be possible to fill all of the jobs and the problem is therefore to choose the 

set of jobs to be filled in some optimal way.  Roughly speaking, given all 

possible assignable sets of jobs one wishes to choose the one with "highest 

priority."  It is not clear, however, what this means as, for example, if the 

choice were between filling jobs 1, 4, 6 or 2, 3, 4, 5. The purpose of this 

note is to show that, in fact, there always does exist a "best' assignment. 
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meaning an assignment of jobs    J,,   ..., J        such that any other possible 

assignment can be arranged in some order    J-i '»   • • •» J  '    such that    J.    has at 

least as high a priority as    JJ'   • 

We formalize the problem as  follows:    Let    X    and    Y    be finite sets and 

let    *    be a function from    X    to subsets of    Y  .     In our example    X    represents 

the jobs,    Y    the workers and    y e ^(x)    means    y    is qualified for    x . 

A subset    A c X    is  assignable if there is a univalent function      <l>  , 

called an assignment,  from    A    to    Y    such  that    (j)(x)  e Kx)    for all    x    in    A. 

Let    a   be the family of  all assignable subsets of    X  . 

Now suppose    X    to be totally ordered and let  U*   be any family of subsets 

of    X .    We call a set    A    of fr optimal if  for any other set    B    of   ^j   there 

is  a univalent mapping    f    from    B    to    A    juch that    f(b)   > b    for all    b      In    B 

Our result is,  then, 

THEOREM 1.       The family   a    of assignable sets of    X    contains  an optimal 

element. 

3.     MATROIDS AND ASSIGNABLE SETS 

DEFINITION.      A family   Jj   of subsets of a finite set    X    is a matroid 

provided the following conditions hold: 

(1) If    A e cF and    B C A    then    B e JJ". 

(2) For any X' ci X all elements of *p which are maximal in X1 have 

the same cardinality. 

THEOREM 2.  The family a  of assignable sets is a matroid. 

This theorem is a consequence of a more general result on graphs due to 

Edmonds and Fulkerson [1].  For the sak3 of completeness, we present our original 

proof for this special case. 

Proof. Condition (1) is obvious. To prove (2) we denote by  |s|  the cardinality 



of the set S and give a proof by induction on  |x'| , the conclusion for 

JX' | ■ 1 being obvious.  Suppose now that A and A' are both subsets of X' 

and elements of a    and that  |A| < [A'|. We must then find B in a which 

is contained in X' and properly contains A .  Let $ be an assignment of A 

and 4)' an assignment of A* . 

Case I. There exists a1 in A' - A such that 4»'(a') t  MA) .  Then 

let B » A U af and extend 4» to B by defining ^U') = ^'(a1) . 

Case II.  (^'(A' - A)c: 4)(A) . Then there exists a' in A'HA such that 

(^'(a1) t  (|)(A) since  JA'| > |A| . Now ^ and 4)' are assignments from the 

set X - a'  to Y - 4),(a) and by inductive hypothesis therefore there is a set 

B'  of  a in X' - a' which properly contains A - a' since  |A - a'l < |A' - a' 

Let 4>,, be an assignment of B' and extend it to B = B'U a' by defining 

4)"(a*) « 4),U') • This completes the proof. 

A. MATROIDS ON ORDERED SETS 

The proof of Theorem 1 is now a direct consequence of Theorem 2 and 

THEOREM 3.  If ^T ^s  a matroid on an ordered set then ^ contains an 

optimal element. 

Proof.  Consider all sets of maximal cardinality in tr and let A be the set 

which is lexicographically maximum among them.  This means that if 

A = I a i » • • • » a J 1      n 

B = (b^, ..., b^] 

are distinct maximal sets with elements listed in decreasing order and then 

a, > b  where i is the smallest index such that a, ^ b. . 



We claim A is optimal, for let B be any other set 

B = [b1 , .. ., b ] 
i      m 

with elements listed in decreasing order.  If b < a,  then A is optimal. 

If not then, say, b > a  . But then consider the set 

S = [a., ..., a ,, b., .... b ] .  Now S contains subsets  [a,, .... a ,] 
1    '  r-1  1      r 1      r-1 

and  [b1 , ..., b ] both in 2P, hence by (2) the set  [a, , . .. , a .  b. ]  is in 

(/•for some i .  Again by (2) this set lies in an n element set A'  of ^p, 

but A1  is then lexicographically greater than A , a contradiction. 

Finally, we observe a converse to Theorem 3 which gives a characterization 

of matroids. 

THEOREM 4.  Let 5* be a family of subsets of a finite set X which 

satisfies (1) and 

(3)  for any ordering of X,^ contains an optimal set.  Then ^T is a 

matroid. 

Proof.  If tX    is not a matroid then there exist sets A and A'  in <r where 

|A| < |A'|  and A is maximal in AU A' . Then order the elements of X so 

that the first r elements a,, ..., a  make up AOA' , the next s elements 

b1 , ..., b  make up A - A'  and the next t elements c. , ..., c  make up 

A' - A, where we note that t > s .  The remaining elements we denote by 

d, , ..., d, .  Now clearly if &   has an optimal set it must be the lexicLgraphical 

maximum and clearly this maximum listed in decreasing order is the set 

A « [a,, ..., a , b , ..., b  and possibly some of the d.] . 
X L    X S X 

But" A cannot be optimal because it does not "dominate" 

A' ■ [a,, ..., a , c-., ..., c ] , i.e., there is no univalent mapping f from A' 



to    A    such that    fCa')   > a',  for either    A = A    and there is no univalent 

mapping at all or    fCa')  = d.     for seme    a'     in A'   ,  in which case    fCa1)  < a'   . 

Remarks.       A second application of Theoram 3 is to the problem of finding the 

minimum spanning tree in a graph.     P.  Rosenstiehl has observed  [2]   that this well- 

known problem also has  a solution assuming only that the ed^es of  the graph are 

ordered.     (The usual ordering of edges  is,  of course,  the one given by their 

lengths.)     Since  the trees in a graph are well known to form a matroid on the set 

of edges, Rosenstiehl's result is a special case of Theorem 3. 

Finally, we remark on the problem of efficient computational methods  for 

finding optimal sets.     From Theorem 3 it is seen that this  is the problem of 

finding the lexicographic maximum.     We can  thus assemble the optimum set in a 

pointwise fashion.    The largest element of    X    which belongs  to cr   is first 

chosen.    Having chosen    k    elements    a,,   ....  z,   , we then choose the largest 

element    a,   -     such that     [a,,   ...»  a,   . ]     is  in ^.    The problem is  then one 

of being able  to decide when a given set belongs to sj".     For  the case of trees, 

the answer is  simply that  the set contain no  cylces; and we are lead  at once to 

the first algorithm of Krushal  [3].     For the case of assignments,  one has  the 

famous criterion of Hall   [4] which has been incorporated into an efficient 

algorithm by Kuhn  [5]. 
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